精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,底面为边长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值为(  )
A.B.C.D.
D
如图,建立空间直角坐标系,

易求点D(,,1),平面AA1C1C的一个法向量是n=(1,0,0),所以cos<n,>==,即sinα=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如下图,在四棱柱中,底面和侧面
是矩形,的中点,.
(1)求证:
(2)求证:平面
(3)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,

(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形是等腰梯形,.在梯形中,,且⊥平面

(1)求证:
(2)若二面角,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.

求证:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角等于   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l的方向向量为s=(-1,1,1),平面π的法向量为n=(2,x2+x,-x),若直线l∥平面π,则x的值为(  )
A.-2B.-C.D.±

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有下列四个命题:
①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,则a·b=|a|·|b|.其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则下面说法中,正确的个数是 (    )
(1)线段AB的中点坐标为;(2)线段AB的长度为
(3)到A,B两点的距离相等的点的坐标满足.
A.0个B.1个 C.2个D.3个

查看答案和解析>>

同步练习册答案