精英家教网 > 高中数学 > 题目详情

(14分)已知数列

   (Ⅰ)求数列的通项公式;

   (Ⅱ)设,试推断是否存在常数A,B,C,使对一切都有成立?说明你的理由;

   (Ⅲ)求证:

解析:(Ⅰ)由已知,得.  

则数列是公比为2的等比数列.    ……………………………………………2分

.   ……………………………………………4分

(Ⅱ).   …………………6分

恒成立,则

解得

故存在常数A,B,C,满足条件.       …………………………………………9分

   (Ⅲ)由(Ⅱ)知:

.    …………………14分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中a1=1,Sn+1=2Sn+1,求数列{an}通项公式an及前n项数和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,对任意n∈N*,都有an>0且Sn=
(an-1)(an+2)
2
,令bn=
lnan+1
lnan

(1)求数列{an}的通项公式;
(2)使乘积b1•b2…bk为整数的k(k∈N*)叫“龙数”,求区间[1,2012]内的所有“龙数”之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)已知数列{an}的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a1,a2,a4,a7,…构成等差数列{bn},Sn是{bn}的前n项和,且b1=a1=1,S5=15.
( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)设Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州二模)已知数列{an}的前n项和为Sn,对任意n∈N*,都有an>0且Sn=
(an-1)(an+2)
2
,令bn=
lnan+1
lnan

(1)求数列{an}的通项公式;
(2)使乘积b1•b2…bk为整数的k(k∈N*)叫“龙数”,求区间[1,2012]内的所有“龙数”之和;
(3)判断bn与bn+1的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=5,前n项和为Sn
且Sn+1=2Sn+n+5(n∈N*).
(Ⅰ)证明数列{an+1}是等比数列;
(Ⅱ)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f'(1).

查看答案和解析>>

同步练习册答案