分析 an=2an-1+2n,两边同时除以2n,得$\frac{{a}_{n}}{{2}^{n}}=\frac{{a}_{n-1}}{{2}^{n-1}}+1$,从而数列{$\frac{{a}_{n}}{{2}^{n}}$}是以$\frac{1}{2}$为首项,以1为公差的等差数列,由此能求出an.
解答 解:∵an=2an-1+2n,两边同时除以2n,得$\frac{{a}_{n}}{{2}^{n}}=\frac{{a}_{n-1}}{{2}^{n-1}}+1$,
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$=1,又$\frac{{a}_{1}}{{2}^{1}}$=$\frac{1}{2}$,
∴数列{$\frac{{a}_{n}}{{2}^{n}}$}是以$\frac{1}{2}$为首项,以1为公差的等差数列,
∴$\frac{{a}_{n}}{{2}^{n}}=\frac{1}{2}+$n-1=n-$\frac{1}{2}$,
∴an=(n-$\frac{1}{2}$)•2n,即${a_n}=(2n-1)•{2^{n-1}}$.
故答案为:(2n-1)•2n-1.
点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | [1,+∞) | B. | (1,+∞) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 60° | B. | 45° | C. | 30° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 1 | 2 | 3 |
p | $\frac{1}{3}$ | a | $\frac{1}{6}$ |
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $2a+\frac{5}{6}$ | D. | $\frac{11}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,$\frac{π}{3}$] | B. | [$\frac{π}{12}$,$\frac{7π}{12}$] | C. | [$\frac{π}{3}$,$\frac{5π}{6}$] | D. | [$\frac{5π}{6}$,π] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com