精英家教网 > 高中数学 > 题目详情

【题目】设正三棱锥A﹣BCD(底面是正三角形,顶点在底面的射影为底面中心)的所有顶点都在球O的球面上,BC=2,E,F分别是AB,BC的中点,EF⊥DE,则球O的表面积为( )
A.
B.6π
C.8π
D.12π

【答案】B
【解析】解:∵E、F分别是AB、BC的中点,∴EF∥AC,

又∵EF⊥DE,

∴AC⊥DE,

取BD的中点O,连接AO、CO,

∵三棱锥A﹣BCD为正三棱锥,

∴AO⊥BD,CO⊥BD,∴BD⊥平面AOC,又AC平面AOC,∴AC⊥BD,

又DE∩BD=D,∴AC⊥平面ABD;

∴AC⊥AB,

设AC=AB=AD=x,则x2+x2=4x=

所以三棱锥对应的长方体的对角线为 =

所以它的外接球半径为

∴球O的表面积为 =6π

所以答案是:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 是平面四边形的对角线, ,且.现在沿所在的直线把折起来,使平面平面,如图.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(﹣4,0)的动直线l与抛物线C:x2=2py(p>0)相交于B、C两点.
(1)当l的斜率是时, ,求抛物线C的方程;
(2)设BC的中垂线在y轴上的截距为b,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥A﹣BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F为AC的中点,AB=BC=2,BE=

(Ⅰ)证明:EF⊥BD;
(Ⅱ)在线段AE上是否存在一点G,使得二面角D﹣BG﹣E的大小为 ?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},则A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数.

)若,求的取值范围.

)若对任意的都有不等式成立,求的值.

)在()的条件下,若函数的图像与轴恰有三个相异的公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明: + +…+ <2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(理科)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.
(1)当t≠0时,求f(x)的单调区间;
(2)证明:对任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a为实数,函数xR

(I)a=0时,求f(x)在区间[02]上的最大值和最小值

(Ⅱ)求函数f(x)的最小值

查看答案和解析>>

同步练习册答案