精英家教网 > 高中数学 > 题目详情

有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:已知从全部210人中随机抽取1人为优秀的概率为

 
 
优秀
 
非优秀
 
总计
 
甲班
 
20
 
 
 
 
 
乙班
 
 
 
60
 
 
 
合计
 
 
 
 
 
210
 
 
(Ⅰ)请完成上面的列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;
(Ⅱ)从全部210人中有放回抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为,若每次抽取的结果是相互独立的,求的分布列及数学期望

(Ⅰ)

 
优秀
非优秀
总计
甲班
20
90
110
乙班
40
60
100
合计
60
150
210
所以按照99%的可靠性要求,能够判断成绩与班级有关。
(Ⅱ)的分布列为

0
1
2
3





 。

解析试题分析:(Ⅰ)

 
优秀
非优秀
总计
甲班
20
90
110
乙班
40
60
100
合计
60
150
210
所以按照99%的可靠性要求,能够判断成绩与班级有关        6分
(Ⅱ),的分布列为

0
1
2
3





                                                12分
考点:随机变量的分布列及其数学期望,卡方检验。
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。解答本题的关键之一,是理解本题对计算能力要求较高。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某年某省有万多文科考生参加高考,除去成绩为分(含分)以上的人与成绩为分(不含分)以下的人,还有约万文科考生的成绩集中在内,其成绩的频率分布如下表所示:

分数段




频率
0.108
0.133
0.161
0.183
分数段




频率
0.193
0.154
0.061
0.007
(1)请估计该次高考成绩在内文科考生的平均分(精确到);
(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.
(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取名路人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10
 
 
不反感
 
8
 
合计
 
 
30
 已知在这人中随机抽取人抽到反感“中国式过马路 ”的路人的概率是.
(Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路 ”与性别有关?
(Ⅱ)若从这人中的女性路人中随机抽取人参加一活动,记反感“中国式过马路”的人数为,求的分布列.      
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(分及以上为及格)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日 期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差x(°C)
10
11
13
12
8
6
就诊人数y(个)
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求
线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x
的线性回归方程
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2
人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理
想?
(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一600名学生进行了一次“钓鱼岛”知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)试估计该年段成绩在段的有多少人;
(3)请你估算该年级的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.

(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分.
(i)求该考场考生“数学与逻辑”科目的平均分;
(ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10
人中随机抽取两人,求两人成绩之和的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组 别
频数
频率
[145.5,149.5)
1
0.02
[149.5,153.5)
4
0.08
[153.5,157.5)
20
0.40
[157.5,161.5)
15
0.30
[161.5,165.5)
8
0.16
[165.5,169.5)
m
n
合 计
M
N
(1)求出表中所表示的数;
(2)画出频率分布直方图;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背。为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验。
两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点)

(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;
(2)从乙组准确回忆因结束在[12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量X,求X分布列及数学期望;
(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好? 计算并说明理由。

查看答案和解析>>

同步练习册答案