精英家教网 > 高中数学 > 题目详情

【题目】某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由表可得线性回归方程中的,据此模型预测零售价为15元时,每天的销售量为_____.

【答案】49

【解析】

根据所给的数据求出这组数据的横标和纵标的平均数,即这组数据的样本中心点,根据样本中心点在线性回归直线上,把样本中心点代入求出a的值,写出线性回归方程,代入x的值,预报出结果.

由表格可知=(16+17+18+19)=17.5,=(50+34+41+31)=39,

这组数据的样本中心点是(17.5,39),

根据样本中心点在线性回归直线上,满足=﹣4x+

∴39=﹣4×17.5,

∴a=109,

这组数据对应的线性回归方程是=﹣4x+109,

∵x=15,

=﹣4×15+109=49,

故答案为:49

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.

(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,

.

(1)求证:

(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,EF分别是CD的中点,(1)证明: ;(2)求异面直线所成的角;(3)证明:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O,其中x,y分别为点O到两个顶点的向量.若将点O到正六角星12个顶点的向量都写成ax+by的形式,则a+b的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且过点P

(1)求椭圆的标准方程;

(2)已知斜率为1的直线l过椭圆的右焦点F交椭圆于A.B两点,求弦AB的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内的两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数y=f(x)的一对“友好点对”(点对(P,Q)与(Q,P)看作同一对“友好点对”).已知函数f(x)= ,则此函数的“友好点对”有(
A.3对
B.2对
C.1对
D.0对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F

(1)求证:ABEF

(2)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.
(3)探讨函数F(x)=lnx﹣ + 是否存在零点?若存在,求出函数F(x)的零点,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案