精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+1|,g(x)=2|x|+a.
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,求实数a的取值范围.

【答案】解:(Ⅰ)当a=0时,不等式即|x+1|≥2|x|,平方可得x2+2x+1≥4x2 , 解得﹣ ≤x≤1,
故不等式的解集为[﹣ ,1].
(Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,即|x+1|﹣2|x|≥a.
设h(x)=|x+1|﹣2|x|=
故当x≥0时,h(x)≤1. 当﹣1≤x<0时,﹣2≤h(x)<1. 当x<﹣1时,h(x)<﹣2.
综上可得h(x)的最大值为1.
由题意可得1≥a,故实数a的取值范围为(﹣∞,1].
【解析】(Ⅰ)当a=0时,不等式即|x+1|≥2|x|,平方可得x2+2x+1≥4x2 , 由此求得不等式的解集.(Ⅱ)由题意可得|x+1|﹣2|x|≥a恒成立,求出h(x)的最大值为1,可得1≥a,由此求得实数a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)<g(x)的解集为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,已知a3=5,且a1 , a2 , a5为递增的等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的通项公式 (k∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)若a∈(﹣∞,﹣ ],且函数g(x)=xeax1﹣2ax+f(x)的最小值为M,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 与抛物线y2=2px(p>0)共焦点F2 , 抛物线上的点M到y轴的距离等于|MF2|﹣1,且椭圆与抛物线的交点Q满足|QF2|= . (Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A、B两点,求此切线在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:

组数

分组(单位:岁)

频数

频率

1

[20,25)

5

0.05

2

[25,30)

20

0.20

3

[30,35)

a

0.35

4

[35,40)

30

b

5

[40,45]

10

0.10

合计

n

1.00


(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个单位向量 的夹角为60°,点C在以O圆心的圆弧AB上移动, =x +y ,则x+y的最大值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱 中,底面 为矩形,面 ⊥平面 = = = =2, 的中点.
(Ⅰ)求证:
(Ⅱ)求BD与平面 所成角的正弦值.

查看答案和解析>>

同步练习册答案