精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.

【答案】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x<a+1},
由A∩B=,A∪B=R,得 ,得a=2,
所以满足A∩B=,A∪B=R的实数a的值为2;
(Ⅱ)因p是q的充分条件,所以AB,且A≠,所以结合数轴可知,
a+1≤1或a﹣1≥3,解得a≤0,或a≥4,
所以p是q的充分条件的实数a的取值范围是(﹣∞,0]∪[4,+∞)
【解析】(Ⅰ)把集合B化简后,由A∩B=,A∪B=R,借助于数轴列方程组可解a的值;(Ⅱ)把p是q的充分条件转化为集合A和集合B之间的关系,运用两集合端点值之间的关系列不等式组求解a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为6,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)过点作斜率为的直线与椭圆交于两点 ,试判断在轴上是否存在点,使得为以为底边的等腰三角形.若存在,求出点的横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C所对的边分别为a、b、c,且BC边上的高为 ,则当 + 取得最大值时,内角A=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求证:平面PAC⊥平面PCD;
(2)若E是PD的中点,求平面BCE将四棱锥P﹣ABCD分成的上下两部分体积V1、V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥ABC﹣A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1⊥底面ABC,AA1= ,P、Q分别是AB、AC上的点,且PQ∥BC.

(1)若平面A1PQ与平面A1B1C1相交于直线l,求证:l∥B1C1
(2)当平面A1PQ⊥平面PQC1B1时,确定点P的位置并说明理由.S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公务员招聘中,既有笔试又有面试,某单位在2015年公务员考试中随机抽取100名考生的笔试成绩,按成绩分为5组[50,60),[60,70),[70,80),[80,90),[90,100],得到的频率分布直方图如图所示.

(1)求a值及这100名考生的平均成绩;
(2)若该单位决定在成绩较高的第三、四、五组中按分层抽样抽取6名考生进入第二轮面试,现从这6名考生中抽取3名考生接受单位领导面试,设第四组中恰有1名考生接受领导面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一扇形的周长为20cm,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案