精英家教网 > 高中数学 > 题目详情
如图,已知△ABC中,∠ABC=90°,PA⊥平面ABC,则三棱锥P-ABC中,互相垂直的平面对数为(  )
A、1B、2C、3D、4
考点:平面与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:利用线面、面面垂直的判定定理可得结论.
解答:解:∵PA⊥平面ABC,
∴平面PAC⊥平面ABC,平面PAB⊥平面ABC,
∵∠ABC=90°,BC⊥PA,
∴BC⊥平面PAB,
∵BC?平面PBC,
∴平面PAB⊥平面PBC.
故选:C.
点评:本题考查线面、面面垂直的判定定理,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且PA=3,PB=2,PC=1,设M是底面三角形ABC内一动点,定义:f(M)=(m,n,p),其中m,n,p分别表示三棱锥M-PAB,M-PBC,M-PAC的体积,若f(M)=(
1
2
,2x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值是(  )
A、2+
2
B、2-
2
C、3-2
2
D、6-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥A-BCD中,AB=AC=BD=CD=2,BC=2AD,直线AD与底面BCD所成角为
π
3
,则此时三棱锥外接球的表面积为(  )
A、4π
B、8π
C、16π
D、
8
2
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1,其底面是边长为6的正三角形,高为2
3
,若它的六个顶点都在球O的球面上,则球O的体积为(  )
A、4
3
π
B、32
3
π
C、
20
5
3
π
D、20
15
π

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,则点A1到平面ABC1D1的距离为(  )
A、1
B、
2
2
C、
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=(  )
A、31B、32C、63D、64

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:2ax+(a+1)y+1=0,l2:(a+1)x+(a-1)y=0,若l1⊥l2,则a=(  )
A、2或
1
2
B、
1
3
或-1
C、
1
3
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三个顶点的坐标分别为A(5,-1),B(1,1),C(2,3),则△ABC的形状为(  )
A、等边三角形
B、直角三角形
C、等腰直角三角形
D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平行四边形ABCD中,AD=2AB,∠BAD=120°,P是面ABCD中一点,
AP
=x
AB
+y
AD
,当点P在以A为圆心,|
AC
|为半径的圆上时,圆的方程(  )
A、x2+4y2+2xy=3
B、x2+4y2-2xy=3
C、4x2+y2+2xy=3
D、4x2+y2-2xy=3

查看答案和解析>>

同步练习册答案