精英家教网 > 高中数学 > 题目详情

【题目】下面是某市环保局连续30天对空气质量指数的监测数据:

61 76 70 56 81 91 55 91 75 81

88 67 101 103 57 91 77 86 81 83

82 82 64 79 86 85 75 71 49 45

(1)完成下面的频率分布表;

(2)完成下面的频率分布直方图,并写出频率分布直方图中的值;

(3)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间内的概率.

分组

频数

频率

[41,51)

2

[51,61)

3

[61,71)

4

[71,81)

6

[81,91)

[91,101)

3

[101,111)

【答案】(1)见解析;(2)见解析;(3)

【解析】

1)根据已知条件中的数据,得到频数,计算求得对应频率,从而补全频率分布表;(2)根据频率分布表求得频率分布直方图缺失的矩形的高,从而补全图形;再根据的频率计算得到矩形的高;(3)列出所有基本事件,找到符合题意的基本事件个数,利用古典概型求出结果.

(1)需补全的数据如下图所示:

分组

频数

频率

(2)补全频率分布直方图,如下图所示:

由已知,空气质量指数在区间的频率为

(3)设表示事件“在本月空气质量指数大于等于的这些天中随机选取两天,这两天中至少有一天空气质量指数在区间内”

由已知得:质量指数在区间内的有天,记这三天分别为

质量指数在区间内的有天,记这两天分别为

则选取的所有可能结果为:,即基本事件数为

事件“至少有一天空气质量指数在区间内”的可能结果为:

基本事件数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥S-ABCD中,O为顶点在底面内的投影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角是

A. 30°B. 45°C. 60°D. 90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校调查了20个班中有网上购物经历的人数,得到了如图所示的茎叶图,以为分组,作出这组数的频率分布直方图,并说明频率分布直方图与茎叶图之间的关系.

0

1

2

3

7 3

7 6 4 4 3 0

7 5 5 4 3 2 0

8 5 4 3 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数),若的解集是

(1)求的值;

2若关于的不等式有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是类比推理的( )

A. 两条直线平行,同旁内角互补,如果是两条平行直线的同旁内角,则

B. 由平面三角形的性质,推测空间四边形的性质

C. 某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.

D. 一切偶数都能被2整除,是偶数,所以能被2整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用

A.一次函数B.二次函数

C.指数型函数D.对数型函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过椭圆的右顶点、下顶点和上顶点

(1)求圆的标准方程;

(2)直线经过点且与垂直,是直线上的动点,过点作圆的切线,切点分别为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1f(x)x1

2f(x)x33xx[44)

3f(x)|x2||x2|

4f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

同步练习册答案