【题目】已知△ABC的三个内角A、B、C所对的边分别是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的取值范围.
【答案】见解析
【解析】(1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0,
即2cos Bsin A=-sin(B+C)=-sin A,
∴cos B=-.
∵0°<B<180°,
∴B=120°.
(2)由余弦定理,得b2=a2+c2-2accos 120°=a2+c2+ac=(a+c)2-ac≥(a+c)2-2= (a+c)2,当且仅当a=c时取等号,
∴(a+c)2≤4,∴a+c≤2,
又a+c>b=,∴a+c∈(,2].
科目:高中数学 来源: 题型:
【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限 (单位:年)与所支出的总费用 (单位:万元)有如下的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知对呈线性相关关系.
(1)试求线性回归方程= +的回归系数,;
(2)当使用年限为年时,估计车的使用总费用.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学的名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车.每车限坐名同学(乘同一辆车的名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的名同学中恰有名同学是来自于同一年级的乘坐方式共有_______种(有数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数同时满足:①对于定义域上的任意,恒有;②对于定义域上的任意, ,当时,恒有,则称函数为“理想函数”.在下列三个函数中:(1);(2);(3).“理想函数”有__________.(只填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为上的偶函数,当时, .对于结论
(1)当时, ;(2)函数的零点个数可以为4,5,7;
(3)若,关于的方程有5个不同的实根,则;
(4)若函数在区间上恒为正,则实数的范围是.
说法正确的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由).
(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为正整数,数列满足,,设数列满足.
(1)求证:数列为等比数列;
(2)若数列是等差数列,求实数的值;
(3)若数列是等差数列,前项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com