精英家教网 > 高中数学 > 题目详情
为调查民营企业的经营状况,某统计机构用分层抽样的方法从A、B、C三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)
城市
民营企业数量
抽取数量
A

4
B
28

C
84
6
 
(1)求的值;
(2)若从城市A与B抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A的概率.
(1),;(2).

试题分析:本题主要考查分层抽样、随机事件的概率等基础知识,考查学生的分析问题解决问题的能力、计算能力、列举能力.第一问,利用分层抽样的解题方法,每一层的样本容量÷总容量都相等,列出方法,解出x,y的值;第二问,把城市A和B抽样的民营企业用字母表示出来,在6个中任取2个写出所有可能情况,一一列举出来,在其中选出符合题意的种数,再相除求概率.
(1)由题意得,                  4分
所以,                          6分
(2)记从城市A所抽取的民营企业分别为,从城市B抽取的民营企业分别为. 则从城市A、B抽取的6个中再随机选2个进行跟踪式调研的基本事件有
,,,,,,,,,
,,,,,共15个            8分
其中,来自城市A: ,,,,,共6个   10分
因此.故这2个都来自城市A的概率为.   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

(1)分别估计该市的市民对甲、乙两部门评分的中位数;
(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙两部门的评优.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂有工人人,其中名工人参加过短期培训(称为类工人),另外名工人参加过长期培训(称为类工人).现用分层抽样的方法(按类、类分二层)从该工厂的工人中共抽查 名工人,调查他们的生产能力(此处的生产能力指一天加工的零件数).
(1)类工人和类工人中各抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1
生产能力分组





人数





表2
生产能力分组




人数





①求,再完成下列频率分布直方图;
②分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组
中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

工人工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,下列判断中正确的是(  )
A.劳动生产率为1000元时,工资为130元
B.劳动生产率平均提高1000元时,工资平均提高80元
C.劳动生产率平均提高1000元时,工资平均提高130元
D.当工资为250元时,劳动生产率为2000元

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)(2011•天津)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号
A1
A2
A3
A4
A5
A6
A7
A8
 
 
得分
15
35
21
28
25
36
18
34
运动员编号
A9
A10
A11
A12
A13
A14
A15
A16
 
 
得分
17
26
25
33
22
12
31
38
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间
[10,20)
[20,30)
[30,40]
人数
 
 
 
(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中的真命题是(     )
?若命题,命题:函数仅有两个零点,则命题为真命题;
?若变量的一组观测数据均在直线上,则的线性相关系数;
?若,则使不等式成立的概率是
A.??B.??C.?D.??

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某普通高中共有教师人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
 
第一批次
第二批次
第三批次
女教师



男教师



 
已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是
(1)求的值;
(2)为了调查研修效果,现从三个批次中按的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?
(3)若从(2)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
昼夜温差
x(℃)
10
11
13
12
8
6
就诊人数
y(个)
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率.
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=x+.
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:==,=-).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

计算机中常用十六进制,采用数字0~9和字母A~F共16个计数符号与十进制得对应关系如下表:
16进制
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10进制
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 
例如用十六进制表示有D+E=1B,则A×B=(    )
A.6E        B.7C           C.5F           D.B0

查看答案和解析>>

同步练习册答案