精英家教网 > 高中数学 > 题目详情
20.函数f(x)=ax2-x在区间[0,1]上是减函数,则实数a的取值范围是a≤$\frac{1}{2}$.

分析 对a进行分类讨论,分a<0,a=0,a>0三种情况,结合二次函数和一次函数的单调性,可得答案.

解答 解:若a<0,函数f(x)=ax2-x是开口朝下,且以直线x=$\frac{1}{2a}$为对称轴的抛物线,
此时$\frac{1}{2a}$<0,满足函数f(x)=ax2-x在区间[0,1]上是减函数;
若a=0,f(x)=-x,在区间[0,1]上是减函数,满足条件;
若a>0,函数f(x)=ax2-x是开口朝上,且以直线x=$\frac{1}{2a}$为对称轴的抛物线,
由函数f(x)=ax2-x在区间[0,1]上是减函数得:$\frac{1}{2a}$≥1,
解得:0<a≤$\frac{1}{2}$,
综上所述,a≤$\frac{1}{2}$,
故答案为:a≤$\frac{1}{2}$.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知向量m=(sinx,1),n=($2\sqrt{3}cosx,cos2x$),且函数f(x)=mn
(1)求f(x)的最小正周期和取得最大值时自变量的取值集合;
(2)将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,再将所得图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0,$\frac{5π}{24}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.能使不等式f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的上确界,若a>0,b>0且a+b=1,则$-\frac{1}{2a}-\frac{2}{b}$的上确界为(  )
A.$-\frac{9}{2}$B.$\frac{9}{2}$C.$\frac{1}{4}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列三角方程:
(1)方程sinx+$\sqrt{3}$cosx=0在x∈[0,π]上的解为$\frac{2π}{3}$;
(2)cos2x-sin2x=$-\frac{1}{2}$;
(3)tan(x-$\frac{π}{3}$)=2sin$\frac{π}{3}$,在区间(-2π,2π)内的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正数x.y满足x3+3y3+9=9xy,求logxy的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题“方程x2+4ax-4a+3=0至少有一实根”的否定为真命题,则实数a的取值范围为(-$\frac{3}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若偶函数f(x)在区间(-∞,-1]上是增函数,则下列关系正确的是(  )
A.f(-2)<f(3)B.f(-2)>f(3)C.f(-2)=f(-3)D.f(-1)≠f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=xlnx,g(x)=-x2+ax-3
(1)若2f(x)≥g(x)对x∈(0,+∞)恒成立,求a的取值范围;
(2)求证:当x∈(0,+∞)时,恒有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

同步练习册答案