精英家教网 > 高中数学 > 题目详情

【题目】已知数列均为递增数列,的前项和为的前项和为.且满足,则下列说法正确的有( )

A.B.C.D.

【答案】ABC

【解析】

数列,两式相减得,所以数列为隔项以2为公差的等差数列形式;数列,两式相除得,所以数列为隔项以2为公比的等比数列形式;

A选项中分别用表示,由数列为递增数列,构建不等式组,解得答案,正确;

B选项中分别用表示,由数列为递增数列,构建不等式组,解得答案,正确;

因为CD选项中只有一个正确,先利用分组求和,表示,再取特值分别计算确切值,利用基本不等式比较得答案.

数列,两式相减得

所以数列为隔项以2为公差的等差数列形式;

数列,两式相除得

所以数列为隔项以2为公比的等比数列形式;

A选项因为,所以,又数列为递增数列,所以,所以,正确;

B选项因为,所以,又数列为递增数列,所以,正确;

因为

因为CD选项中只有一个正确,取特值,当时,

所以C选项正确,D选项错误.

故选:ABC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)已知是虚数单位)是关于的方程的根,,求的值;

2)已知是虚数单位)是关于的方程的一个根,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数,其中为虚数单位,对于任意复数,有

(1)求的值;

(2)若复数满足,求的取值范围;

(3)我们把上述关系式看作复平面上表示复数的点和表示复数的点之间的一个变换,问是否存在一条直线,若点在直线上,则点仍然在直线上?如果存在,求出直线的方程,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在极大值与极小值,且在处取得极小值.

(1)求实数的值;

(2)若函数有两个零点,求实数的取值范围.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商家耗资4500万元购进一批(虚拟现实)设备,经调试后计划明年开始投入使用,由于设备损耗和维护,第一年需维修保养费用200万元,从第二年开始,每年的维修保并费用比上一年增40万元.该设备使用后,每年的总收入为2800万元.

(1)求盈利额(万元)与使用年数之间的函数关系式;

(2)该设备使用多少年,商家的年平均盈利额最大?最大年平均盈利额是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对40名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为常喝,体重超过肥胖”.已知在全部40人中随机抽取1人,抽到肥胖学生的概率为.

常喝

不常喝

合计

肥胖

3

不肥胖

5

合计

40

1)请将上面的列联表补充完整;

2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由.

参考公式:

①卡方统计量,其中为样本容量;

②独立性检验中的临界值参考表:

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为将数据分组成,…,时,所作的频率分布直方图是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,右焦点是抛物线的焦点.

(1)求椭圆的方程;

(2)已知动直线过右焦点,且与椭圆分别交于两点.试问轴上是否存在定点,使得恒成立?若存在求出点的坐标:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,平面.

(1)证明:.

(2)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案