精英家教网 > 高中数学 > 题目详情
(2009•闸北区二模)设x,y,z为正实数,满足x-y+2z=0,则
y2xz
的最小值是
8
8
分析:先将等式化为y=x+2z,再利用基本不等式求最值.
解答:解:由题意得,y=x+2z,
∵x,y,z为正实数,
∴y=x+2z≥2
2xz
,∴y2≥8xz,∴
y2
xz
的最小值是8,
故答案为8.
点评:本题的考点是基本不等式在最值问题中的应用,主要考查基本不等式的运用,应注意基本不等式的使用条件:一正二定三相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闸北区二模)函数y=
log0.5x
的定义域为
(0,1]
(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)方程|sin
πx
2
|=
x
-1
的实数解的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)设实数x,y满足条件
x≥0
x≤y
x+2y≤3
则z=2x-y的最大值是
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)若cotα=-
1
2
,则tan2α的值为
4
3
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)增广矩阵为
1-25
318
的线性方程组的解用向量的坐标形式可表示为
(3,-1)
(3,-1)

查看答案和解析>>

同步练习册答案