精英家教网 > 高中数学 > 题目详情
13.函数f(x)的定义域为R,周期为4,若f(x-1)为奇函数,且f(1)=1,则f(7)+f(9)=1.

分析 由已知中f(x-1)为奇函数,可得f(-1)=0,结合函数f(x)的定义域为R,周期为4,且f(1)=1,则f(7)+f(9)=f(-1)+f(1),进而得到答案.

解答 解:由f(x-1)为奇函数,
知f(-1)=0,
又∵函数f(x)的定义域为R,周期为4,f(1)=1,
∴f(7)+f(9)=f(-1)+f(1)=1,
故答案为:1

点评 本题考查的知识点是函数的奇偶性和函数的周期性,是函数图象和性质的综合应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求实数x,y满足x2+y2+2x-4y+1=0,求$\frac{y}{x-4}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x∈R|-4<x<1,},集合B={x∈R|(x+3)(x-2)<0},且A∩B=(  )
A.{x|-4<x<1}B.{x|-4<x<-3}C.{x|-3<x<1}D.{x|-3<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)定义如下面数表,{xn}满足x0=5,且对任意自然数n均有xn+1=f(xn),则x2014的值为(  )
x12345
f(x)41352
A.4B.1C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.现有6个人分乘两辆不同的出租车,已知每辆车最多能乘坐4个人,则不同的乘车方案种数为(  )
A.30B.50C.60D.70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,AC与BD交于O,F是线段DC的三等分点,AF与CD交于点E,若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AE}$等于(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$B.$\frac{3}{4}\overrightarrow{a}$+$\frac{1}{4}\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在各项都为正数的等比数列{an}中,a1=3,S3=21,则a3+a4+a5=84.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知i为虚数单位,则复数$\frac{{i}^{2015}}{i-2}$在复平面内对应的点的坐标为(  )
A.($\frac{1}{5}$,$\frac{2}{5}$)B.(-$\frac{1}{5}$,-$\frac{2}{5}$)C.(-$\frac{1}{5}$,$\frac{2}{5}$)D.($\frac{1}{5}$,-$\frac{2}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2≥10}\\{{x}^{2}-3x-2≥8}\end{array}\right.$的解集.

查看答案和解析>>

同步练习册答案