精英家教网 > 高中数学 > 题目详情
20.数列$\left\{{{{({\frac{2}{3}})}^n},n∈N*}\right\}$所有项的和为2.

分析 先求出数列$\left\{{{{({\frac{2}{3}})}^n},n∈N*}\right\}$前n项和,再求出前n项和的极限,从而求出结果.

解答 解:数列$\left\{{{{({\frac{2}{3}})}^n},n∈N*}\right\}$前n项和:
Sn=$\frac{\frac{2}{3}[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}$=2[1-($\frac{2}{3}$)n],
∴数列$\left\{{{{({\frac{2}{3}})}^n},n∈N*}\right\}$所有项的和为:
S=$\underset{lim}{n→∞}{S}_{n}$=$\underset{lim}{n→∞}2[1-(\frac{2}{3})^{n}]$=2.
故答案为:2.

点评 本题考查等比数列的前n项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}}-\frac{1}{x},x≥1}\\{2x+2,x<1}\end{array}\right.$,则f(f(0))=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{{e}^{x}}{{x}^{2}}$+k($\frac{2}{x}$+lnx)(k为常数).
(1)当k=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当k≥0时,求函数f(x)的单调区间;
(3)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z满足$\frac{z}{z-i}=i$,则$\overline z$=(  )
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校从五月开始,要求高三学生下午2:30前到校,加班班主任李老师下午每天到校,假设李老师和小红同学在下午2:00到2:30之间到校,且每人在该段时间到校都是等可能的,则小红同学比李老师至少早5分钟到校的概率为$\frac{25}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在三棱锥P-ABC中,已知PA,PB,PC两两垂直,PB=5,PC=6,三棱锥P-ABC的体积为20,Q是BC的中点,求异面直线PB,AQ所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱柱ABC-A1B1C1中,已知它的底面边长为10,高为20.
(1)求正三棱柱ABC-A1B1C1的表面积与体积;
(2)若P、Q分别是BC、CC1的中点,求异面直线PQ与AC所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面的命题中是真命题的是(  )
A.两个平面的法向量所成的角是这两个平面所成的角
B.设空间向量$\overrightarrow a$,$\overrightarrow b$为非零向量,若$\overrightarrow a•\overrightarrow b>0$,则$<\overrightarrow a,\overrightarrow b>$为锐角
C.方程mx2+ny2=1(m>0,n>0)表示的曲线是椭圆
D.等轴双曲线的渐近线互相垂直,离心率等于$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.实数x,y,z满足x>0,y>0,z>0,求证:$\sqrt{x}+\sqrt{y}+\sqrt{z}≤\frac{x}{2}+\frac{y}{2}+\frac{z}{2}+\frac{3}{2}$.

查看答案和解析>>

同步练习册答案