【题目】设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移 个单位长度后,所得的图象与原图象重合,则ω的最小值等于 .
【答案】6
【解析】解:∵y=f(x)的图象向右平移 个单位长度后
所得:y=cosω(x﹣ )=cos(ωx﹣ );
∵函数图象平移 个单位长度后,所得的图象与原图象重合,
说明函数平移整数个周期,就是2π的整数倍,
所以 =2kπ
所以ω=6k,k∈Z;
ω>0
∴ω的最小值等于:6.
所以答案是:6.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆于, 两点,交此抛物线于, 两点,其中, 在第一象限, , 在第二象限.
(1)求该抛物线的方程;
(2)是否存在直线,使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C为锐角△ABC的三个内角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且 ⊥ .
(1)求A的大小;
(2)求y=2sin2B+cos( ﹣2B)取最大值时角B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,(a>0,b∈R)
(1)当x≠0时,求证:f(x)=f( );
(2)若函数y=f(x),x∈[ ,2]的值域为[5,6],求f(x);
(3)在(2)条件下,讨论函数g(x)=f(2x)﹣k(k∈R)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com