精英家教网 > 高中数学 > 题目详情
已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.
精英家教网

精英家教网
如图,连接EG、FG、EF、BD、AC、EF、BD分别交AC于H、O.因为ABCD是正方形,E、F分别为AB和AD的中点,故EFBD,H为AO的中点.
BD不在平面EFG上.否则,平面EFG和平面ABCD重合,从而点G在平面的ABCD上,与题设矛盾.
由直线和平面平行的判定定理知BD平面EFG,所以BD和平面EFG的距离就是点B到平面EFG的距离.
∵BD⊥AC,
∴EF⊥HC.
∵GC⊥平面ABCD,
∴EF⊥GC,
∴EF⊥平面HCG.
∴平面EFG⊥平面HCG,HG是这两个垂直平面的交线.
作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,所以线段OK的长就是点B到平面EFG的距离.
∵正方形ABCD的边长为4,GC=2,
∴AC=4
2
,HO=
2
,HC=3
2

∴在Rt△HCG中,HG=
(3
2
)
2
+22=
22

由于Rt△HKO和Rt△HCG有一个锐角是公共的,故Rt△HKO△HCG.
∴OK=
HO?GC
HG
=
2
×2
22
=
2
11
11

即点B到平面EFG的距离为
2
11
11
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知ABCD是边长为2的正方形,DE⊥平面ABCD,BF⊥平面ABCD,且FB=2DE=2.
(1)求点E到平面FBC的距离;
(2)求证:平面AEC⊥平面AFC.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知ABCD是边长为a的正方形,E,F分别是AB,AD的中点,CG⊥面ABCD,CG=a.
(1)求证:BD∥EFG;
(2)求点B到面GEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在的平面,且GC=2.求点B到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知ABCD是边长为2的正方形,E、F分别是BC、CD的中点,则
AE
AF
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是边长为2的正方形,DE⊥平面ABCD,BF⊥平面ABCD,且FB=2DE=2.
(1)求证:平面AEC⊥平面AFC;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

同步练习册答案