精英家教网 > 高中数学 > 题目详情
若椭圆经过原点,且焦点为F1(1,0)、F2(3,0),则其离心率为( )
A.B.C.D.
C
因为2a=1+3=4,2c=2,所以e=。故选C。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的左右焦点分别为,过焦点的倾斜角为直线交椭圆于A,B两点,弦长,若三角形ABF2的内切圆的面积为,则椭圆的离心率为   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆经过点M(-2,-1),离心率为。过点M作倾斜角
互补的两条直线分别与椭圆C交于异于M的另外两点P、Q。
(I)求椭圆C的方程;
(II)能否为直角?证明你的结论;
(III)证明:直线PQ的斜率为定值,并求这个定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆内有一点为椭圆的右焦点,在椭圆上有一点
使的值最小,则此最小值为                (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F(c,0)为椭圆的右焦点,椭圆上的点与点F的距
离的最大值为M,最小值为m,则椭圆上与F点的距离是的点是
A.(B.(0,C.(D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点FA分别是椭圆的左焦点、右顶点,B(0,b)满足
,则椭圆的离心率等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点坐标是                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆E:(a>b>0)的离心率e=,左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上
(1)求椭圆E的方程;
(2)设l1l2是过点G(,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N,试问直线MN是否恒过定点?
若经过,求出该定点坐标;若不经过,请说明理由。

查看答案和解析>>

同步练习册答案