精英家教网 > 高中数学 > 题目详情

【题目】现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.

(Ⅰ)求小明同学至少取到1道乙类题的概率;

(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.求小明同学至少答对2道题的概率.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】试题分析:(Ⅰ) 从10道试题中取出3个的所有可能结果数有,至少取到1道乙类题的对立事件是:小明同学取到的全为甲类题,代入古典概率的求解公式即可求解;(Ⅱ)分别计算出答对2道和答对3道题的概率即可.

试题解析:(Ⅰ)记“小明同学至少取到1道乙类题”为事件A.

(Ⅱ) 设小明同学答对题的个数为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

(Ⅰ)由折线图看出,可用线性回归模型拟合的关系,请用相关系数加以说明;

(Ⅱ)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

参考数据:

参考公式:相关系数

回归方程

本题中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

,过点的直线交曲线两点,且,求直线的方程;

若曲线表示圆,且直线与圆交于两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线方程为抛物线到直线距离最小点,点抛物线上异于点点,直线直线于点过点平行的直线与抛物线于点.

坐标;

)证明直线定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长为2的正方形,点分别中点,将分别沿起,使两点重合于.

求证

求四棱体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

(1)求关于的线性回归方程;

(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润取到最大值?(结果保留两位小数)

参考公式:

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的运动员人数分别为27918,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.

)求应从这三个协会中分别抽取的运动员人数;

)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.

)用所给编号列出所有可能的结果;

)设为事件编号为的两名运动员至少有一人被抽到,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

(1)求频率分布图中的值,并估计该企业的职工对该部门评分不低于80的概率;

(2)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):

(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);

(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.

查看答案和解析>>

同步练习册答案