精英家教网 > 高中数学 > 题目详情
(2011•潍坊二模)运行如图的程序框图,当输入m=-4时的输出结果为n,若变量x,y满足
x+y≤3
x-y≥-1
y≥n
,则目标函数z=2x+y的最大值为
5
5
分析:分析:先根据程序框图得到n的值,再画出约束条件
x+y≤3
x-y≥-1
y≥1
,的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数z=2x+y的最大值.
解答:解:由程序框图运行的结果得:n=1,
由约束条件
x+y≤3
x-y≥-1
y≥1
,得如图所示的三角形区域,
三个顶点坐标为A(2,1),B(1,2),C(0,1)
将三个代入得z的值分别为10,8,2
直线z=2x+y过点A (2,1)时,z取得最大值为5;
故答案为:5.
点评:点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•潍坊二模)设p:
xx-2
<0
,q:0<x<m,若p是q成立的充分不必要条件,则m的取值范围是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)已知数列an=2n-1(n∈N*),把数列{an}的各项排成如图所示的三角形数阵,记(m,n)表示该数阵中第m行中从左到右的第n个数,则S(10,6)对应于数阵中的数是
101
101

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)已知
m
=(cos?x,sin?x),
n
=(cos?x,2
3
cos?x-sin?x)
,?>0,函数f(x)=
m
n
+|
m
|
,x1,x2是集合M={x|f(x)=1}中任意两个元素,且|x1-x2|的最小值为
π
2

(1)求?的值.
(2)在△ABC中,a,b,c分别是A,B,C的对边.f(A)=2,c=2,S△ABC=
3
2
,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•潍坊二模)已知偶函数f(x)对?x∈R满足f(2+x)=f(2-x)且当-2≤x≤0时,f(x)=log2(1-x),则f(2011)的值为(  )

查看答案和解析>>

同步练习册答案