精英家教网 > 高中数学 > 题目详情
27、已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x)=f(x+4);②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2),③y=f(x+2)的图象关于y轴对称,则下列结论中,正确的是(  )
分析:求解本题需要先把函数的性质研究清楚,由三个条件知函数周期为4,其对称轴方程为x=2,在区间[0,2]上是增函数,观察四个选项发现自变量都不在已知的单调区间内故应用相关的性质将其值用区间[0,2]上的函数值表示出,以方便利用单调性比较大小.
解答:解:由①②③三个条件知函数的周期是4,在区间[0,2]上是增函数且其对称轴为x=2
∴f(4.5)=f(0.5),
f(7)=f(3)=f(2+1)=f(2-1)=f(1),
f(6.5)f(2.5)=f(2+0.5)=f(2-0.5)=f(1.5)
∵0<0.5<1<1.5<2,函数y=f(x)在区间[0,2]上是增函数
∴f(0.5)<f(1)<f(1.5),即f(4.5)<f(7)<f(6.5)
故选B.
点评:本题考点是函数单调性的应用,综合考查了函数的周期性,函数的对称性与函数的单调性,以及函数图象的平移规律,涉及到了函数的三个主要性质,本题中同期性与对称性的作用是将不在同一个单调区间上的函数值的大小比较问题转化成一个单调区间上来比较,函数图象关于直线x=a对称,有两个等价方程一为f(a+x)=f(a-x),一为f(x)=f(2a-x),做题时应根据题目条件灵活选择对称性的表达形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案