精英家教网 > 高中数学 > 题目详情

(理)设函数数学公式
(1)当a=2时,用函数单调性定义求f(x)的单调递减区间
(2)若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为a和b,求f(x)>b2恒成立的概率.

解:(1)
根据耐克函数的性质,的单调递减区间是,证明如下:
设任意
=

∴f(x1)-f(x2)>0
所以的单调递减区间是
(2)∵
∴16a>b4
基本事件总数为6×6=36,
当a=1时,b=1;
当a=2,3,4,5时,b=1,2,共2×4=8种情况;
当a=6时,b=1,2,3;
目标事件个数为1+8+3=12.因此所求概率为
分析:(1)利用函数单调性定义求单调区间,可先判断其单调性,再用定义证明,证明时需经过设、差、变、判、结五步解决;
(2)先由f(x)>b2恒成立,可知f(x)的最小值大于b2,可得a、b间的不等关系,再利用古典概型公式,用列举法得目标事件在基本事件总数中的比例即可
点评:本题综合考查了函数单调性的定义及证明方法,函数、不等式与概率的综合,解题时要认真体会函数问题是怎样与计数概率联系起来的
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉定区二模)(理)设函数f(x)=
1-x2
,x∈[-1,0)
1-x,x∈[0,1]
,则将y=f(x)的曲线绕x轴旋转一周所得几何体的体积为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年济宁质检理)(12分)

  设函数

(1)判断函数的单调性;

(2)对于函数,若,则

写出该命题的逆命题,判断这个逆命题的真假性,并加以证明.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年鹰潭市一模理)(12分)设函数

(1)求函数的单调区间和极值

(2)若当时,恒有,试确定的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年杭州市质检二理)  (14分) 设函数

(1)试判定函数的单调性,并说明理由;

(2)已知函数的图象在点处的切线斜率为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年天津南开区质检理)  (12分)

设函数

(1)当时,求函数的极大值和极小值;

(2)若函数在区间上是增函数,求实数的取值范围。

查看答案和解析>>

同步练习册答案