分析 命题p:?x∈[1,$\sqrt{2}$],x2-a≥0,可得a≤(x2)min.命题q:?x0∈R,$\frac{1}{4}$x02-ax0+2-a=0,可得△≥0.再根据命题“p∧q”为真命题,即可得出.
解答 解:命题p:?x∈[1,$\sqrt{2}$],x2-a≥0,∴a≤(x2)min=1.
命题q:?x0∈R,$\frac{1}{4}$x02-ax0+2-a=0,∴△=${a}^{2}-4×\frac{1}{4}×(2-a)$≥0,解得a≥1或a≤-2.
若命题“p∧q”为真命题,∴$\left\{\begin{array}{l}{a≤1}\\{a≥1或a≤-2}\end{array}\right.$,
解得a=1或a≤-2.
∴实数a的取值范围是(-∞,-2]∪{1}.
点评 本题考查了简易逻辑的性质、函数的单调性、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | x+y-3=0或x-2y=0 | B. | x+y-3=0或2x-y=0 | ||
C. | x-y+1=0或x+y-3=0 | D. | x-y+1=0或2x-y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,0) | B. | ($\frac{1}{2}$,0) | C. | ($\frac{1}{8}$,0) | D. | (0,$\frac{1}{8}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{5}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com