【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有 恒成立,则不等式x2f(x)>0的解集为 .
【答案】(﹣∞,﹣2)∪(0,2)
【解析】解:因为当x>0时,有 恒成立,即[ ]′<0恒成立,所以 在(0,+∞)内单调递减.
因为f(2)=0,
所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.
又因为f(x)是定义在R上的奇函数,
所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案是:(﹣∞,﹣2)∪(0,2).
【考点精析】根据题目的已知条件,利用函数的奇函数的相关知识可以得到问题的答案,需要掌握一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其图象向右平移 个单位后得到的函数为奇函数,则函数y=f(x)的图象( )
A.关于点( ,0)对称?
B.关于直线x= 对称
C.关于点( ,0)对称?
D.关于直线x= 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=kx,
(1)求函数 的单调递增区间;
(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求k的取值范围;
(3)求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,其中m为实数.
(Ⅰ)若函数f(x)在(1,f(1))处的切线方程为3x+3y﹣4=0,求m的值;
(Ⅱ)求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法: ① ;
②函数f(x)的周期为π;
③f(x)在区间 上单调递增;
④f(x)的图象关于点 中心对称
其中正确说法的序号是( )
A.②③
B.①③
C.①④
D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医生的专业能力参数K可有效衡量医生的综合能力,K越大,综合能力越强,并规定:能力参数K不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力K的频率分布直方图:
(1)求出这个样本的合格率、优秀率;
(2)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名. ①求这2名医生的能力参数K为同一组的概率;
②设这2名医生中能力参数K为优秀的人数为X,求随机变量X的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com