精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
π
|x+π|, x<-
π
2
-sinx, -
π
2
≤x≤0
1
3
x2-
2
3
x, x>0
,若关于x的方程满足f(x)=m(m∈R)有且仅有三个不同的实数根,且α,β分别是三个根中最小根和最大根,则β-sin(
π
3
+α)
的值为
5
2
5
2
分析:同一坐标系内作出函数y=f(x)的图象和直线y=m,因为两图象有且仅有三个公共点,所以m=1.再解方程f(x)=1,得最大根β与最小根α,将它们代入再化简,即可得到要求值式子的值.
解答:解:函数f(x)=
2
π
|x+π|, x<-
π
2
-sinx, -
π
2
≤x≤0
1
3
x2-
2
3
x, x>0
的图象如下图所示:

可得函数f(x)的单调减区间为(-∞,-π)和(-
π
2
,1);
单调增区间为(-π,-
π
2
)和(1,+∞),
f(x)的极大值为f(-
π
2
)=1,极小值为f(1)=-
1
3
和f(-π)=0
将直线y=m进行平移,可得当m=1时,两图象有且仅有三个不同的公共点,
相应地方程f(x)=m(m∈R)有且仅有三个不同的实数根.
令f(x)=1,得x1=-
2
,x2=-
π
2
,x3=3,所以β=3,α=-
2

∴β-sin(
π
3
+α)=3-•sin(-
6
)=3-
1
2
=
5
2

故答案为:
5
2
点评:本题以分段函数为例,求方程的最大根和最小根,并且用这个根来求值,着重考查了函数与方程的关系,以及三角函数求值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案