精英家教网 > 高中数学 > 题目详情

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 =80, =20, yi=184, =720.
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,b= ,a= ﹣b ,其中 为样本平均值.

【答案】
(1)解:由题意知n=10, = =8, = =2,

﹣n× 2=720﹣10×82=80, yi﹣n =184﹣10×8×2=24,

由此得b═ =0.3,a=2﹣0.3×8=﹣0.4,

故所求回归方程为 =0.3x﹣0.4


(2)解:由于变量y的值随x的值增加而增加(b=0.3>0),故x与y之间是正相关
(3)解:将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7﹣0.4=1.7(千元)
【解析】(1)由题意可知n, ,进而代入可得b、a值,可得方程;(2)由回归方程x的系数b的正负可判;(3)把x=7代入回归方程求其函数值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是正方形, 平面 分别是 的中点.

1)求证:平面平面

2)在线段上确定一点,使平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.

(1)求动点的轨迹的方程;

(2)过动点作曲线的两条切线,切点分别为,求证:的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,前n项和为是首项为2的等比数列,且公比大于0,

1的通项公式;

2求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验训练情况,武警某支队于近期举办了一场展示活动,其中男队员12人,女队员18人,测试结果如茎叶图所示(单位:分).若成绩不低于175分者授予“优秀警员”称号,其他队员则给予“优秀陪练员”称号.

(1)若用分层抽样的方法从“优秀警员”和“优秀陪练员”中共提取10人,然后再从这10人中选4人,那么至少有1人是“优秀警员”的概率是多少?

(2)若所有“优秀警员”中选3名代表,用表示所选女“优秀警员”的人数,试求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)B1作直线交椭圆于PQ两点,使PB2⊥QB2,△PB2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计表明,某种型号的汽车在匀速行驶中每小时耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为: ,已知甲、乙两地相距100千米.

(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

同步练习册答案