精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 )的焦点是椭圆 )的右焦点,且两曲线有公共点

1)求椭圆的方程;

2)椭圆的左、右顶点分别为 ,若过点且斜率不为零的直线与椭圆交于两点,已知直线相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.

【答案】(1) (2) 在定直线

【解析】试题分析:(1)由条件易得: ,从而得到椭圆的方程;

(2)先由特殊位置定出猜想点在直线上,由条件可得直线的斜率存在, 设直线,联立方程,消得: 有两个不等的实根,利用韦达定理转化条件即可.

试题解析:

(1)将代入抛物线

∴抛物线的焦点为,则椭圆

又点在椭圆上,

, 解得

椭圆的方程为

(2)方法一

当点为椭圆的上顶点时,直线的方程为,此时点 ,则直线和直线,联立,解得

当点为椭圆的下顶点时,由对称性知: .

猜想点在直线上,证明如下:

由条件可得直线的斜率存在, 设直线

联立方程

得: 有两个不等的实根,

,则

则直线与直线

联立两直线方程得(其中点横坐标)

代入上述方程中可得

即证

代入上式可得

,此式成立

∴点在定直线上.

方法二

由条件可得直线的斜率存在, 设直线

联立方程

得: 有两个不等的实根,

,则

三点共线,有:

三点共线,有:

上两式相比得

解得

∴点在定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年底,我国发明专利申请量已经连续8年位居世界首位,下表是我国2012年至2018年发明专利申请量以及相关数据.

总计

年代代码

1

2

3

4

5

6

7

28

申请量(万件)

65

82

92

110

133

138

154

774

65

164

276

440

665

828

1078

3516

注:年代代码1~7分别表示2012~2018.

1)可以看出申请量每年都在增加,请问这几年中那一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到0.01),并预测我国发明专利申请量突破200万件的年份.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近来天气变化无常,陡然升温、降温幅度大于的天气现象出现增多.陡然降温幅度大于容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的名幼儿进行调查,得到了如下的列联表,若在全部名幼儿中随机抽取人,抽到患伤风感冒疾病的幼儿的概率为,

(1)请将下面的列联表补充完整;

患伤风感冒疾病

不患伤风感冒疾病

合计

25

20

合计

100

(2)能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;

(3)已知在患伤风感冒疾病的名女性幼儿中,名又患黄痘病.现在从患伤风感冒疾病的名女性中,选出名进行其他方面的排查,记选出患黄痘病的女性人数为,的分布列以及数学期望.下面的临界值表供参考:

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为边长为2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,点F为棱PD的中点.

(1)在棱AB上是否存在一点E,使得AF∥面PCE,并说明理由;

(2)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间,结果如下:

类别

铁观音

龙井

金骏眉

大红袍

顾客数(人)

20

30

40

10

时间(分钟/人)

2

3

4

6

注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.

1)求服务员恰好在第6分种开始准备第三位顾客的泡茶工具的概率;

2)用表示至第4分钟末已准备好了工具的顾客人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.从外观上看,是严丝合缝的十字立方体,其上下、左右、前后完全对称;六根等长的正四棱柱分成三组,经90°榫卯起来.如图所示,正四棱柱的高为8,底面正方形的边长为1,将这个鲁班锁放进一个球形容器内,则该球形容器半径的最小值为(容器壁的厚度忽略不计)(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断上的单调性,并说明理由;

(2)求的极值;

(3)当时,,求实数的取值范围.

查看答案和解析>>

同步练习册答案