精英家教网 > 高中数学 > 题目详情

【题目】已知函数对任意的,恒有成立.

1)如果为奇函数,求满足的条件.

2)在(1)中条件下,若上为增函数,求实数的取值范围.

【答案】(1)(2)

【解析】

1)根据函数奇偶性的定义得恒成立,代入化简得,结合恒成立得到值,由一元二次不等式恒成立结合可得的取值范围;(2)根据单调性的定义和性质得恒成立,建立不等式关系上恒成立即可得到结论.

1)设的定义域为

因为为奇函数,所以对任意成立,

,化简得

因对于任意都成立,则.

因为对任意的,恒有成立,

所以对任意的,恒有

对任意的恒成立。

,得

于是满足的条件为.

2)当时,

因为上为增函数,

所以任取,且

恒成立,

也就是恒成立,所以

结合(1),得实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且.若对任意的,都有.

1)判断函数的单调性,并说明理由;

2)若,求实数的取值范围;.

3)若不等式对任意都恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若有三个极值点,求的取值范围;

(2)若对任意都恒成立的的最大值为,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足,价格近似满足

(1)写出该商品的日销售额(单位:元)与时间)的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);

(2)求该种商品的日销售额的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>﹣xf′(x)恒成立,则函数g(x)=xf(x)+lg|x+1|的零点的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为打入国际市场,决定从两种产品中选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表:(单位:万美元)

年固定成本

每件产品成本

每件产品销售价

每年最多可生产的件数

A产品

20

10

200

B产品

40

8

18

120

其中年固定成本与年生产的件数无关,是待定常数,其值由生产产品的原材料决定,预计,另外,年销售B产品时需上交万美元的特别关税,假设生产出来的产品都能在当年销售出去.

(1)求该厂分别投资生产A、两种产品的年利润与生产相应产品的件数之间的函数关系,并求出其定义域;

(2)如何投资才可获得最大年利润?请设计相关方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M:: (a>0)的一个焦点为F(﹣1,0),左右顶点分别为A,B.经过点F的直线l与椭圆M交于C,D两点.
(1)求椭圆方程;
(2)当直线l的倾斜角为45°时,求线段CD的长;
(3)记△ABD与△ABC的面积分别为S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的结果为2,则输入的正整数a的可能取值的集合是(

A.{1,2,3,4,5}
B.{1,2,3,4,5,6}
C.{2,3,4,5}
D.{2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数满足如下四个条件:

定义域为

③当时,

④对任意满足.

根据上述条件,求解下列问题:

的值.

应用函数单调性的定义判断并证明的单调性.

求不等式的解集.

查看答案和解析>>

同步练习册答案