精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求函数处的切线方程;

2)当时恒有成立,求满足条件的m的范围;

3)当时,令方程有两个不同的根,且满足,求证:

【答案】1;(23)证明见解析.

【解析】

1)求出即可

2)由,即

3)先利用导数得出上单调递减,在上单调递增,其中,然后分别求出处的切线方程和处的切线,然后结合图象即可证明.

1)由题意,当时,

∴函数处的切线方程为:

2)由题意,当时恒有成立,

对任意成立.

∵当时,恒成立,

对任意恒成立.

m的取值范围为

3)证明:由题意,当时,

①令,即

根据图,很明显交点的横坐标在1之间,设为

的解为,(),且

②令,即x,解得

③令,即,解得

上单调递减,在上单调递增,在处取得极小值.

∴根据题意,画图如下:

由图,①设函数处的切线为

∴直线的直线方程:

,解得

②设函数处的切线为

.∴直线的直线方程:

,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数kk0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1ab0),AB为椭圆的长轴端点,CD为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区现有一个直角梯形水产养殖区ABCDABC=90°ABCDAB=800mBC=1600mCD=4000m,在点P处有一灯塔(如图),且点PBCCD的距离都是1200m,现拟将养殖区ACD分成两块,经过灯塔P增加一道分隔网EF,在AEF内试验养殖一种新的水产品,当AEF的面积最小时,对原有水产品养殖的影响最小.设AE=d

1)若PEF的中点,求d的值;

2)求对原有水产品养殖的影响最小时的d的值,并求AEF面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为4的正方形中,的中点,的中点,现将三角形沿翻折成如图2所示的五棱锥.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为Ia),按从大到小排成的三位数记为Da)(例如a=219,则Ia)=129,Da)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为( )

A. 792 B. 693 C. 594 D. 495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为

1)求曲线的直角坐标方程与直线l的参数方程;

2)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)xlnxg(x)x2ax.

1)求函数f(x)在区间[tt1](t0)上的最小值m(t)

2)令h(x)g(x)f(x)A(x1h(x1))B(x2h(x2))(x1x2)是函数h(x)图像上任意两点,且满足1,求实数a的取值范围;

3)若x(0,1],使f(x)≥成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为上的点,的面积最大值为,直线交于两点,且为坐标原点)

1)求椭圆的方程;

2)求证:到直线的距离为定值,并求其定值.

查看答案和解析>>

同步练习册答案