A. | x+$\sqrt{2}$y=4 | B. | $\sqrt{2}$x+y=3 | C. | $\sqrt{2}$x+y=4 | D. | x+$\sqrt{2}$y=2 |
分析 求出圆心与已知点确定直线的斜率,利用两直线垂直时斜率的乘积为-1求出过此点切线方程的斜率,即可求出切线方程.
解答 解:由圆x2+y2=3,得到圆心的坐标为(0,0),
∴连接圆心与点($\sqrt{2}$,1)所得直线的斜率为k=$\frac{\sqrt{2}}{2}$,
∴过圆x2+y2=3上一点($\sqrt{2}$,1)的圆的切线的斜率为-$\sqrt{2}$,
则切线方程为y-1=-$\sqrt{2}$(x-$\sqrt{2}$),
整理得:$\sqrt{2}$x+y=3.
故选:B.
点评 本题考查了直线与圆的位置关系,涉及的知识有:两直线垂直时斜率满足的关系,以及直线的点斜式方程,找出切线的斜率是解本题的关键,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | $\sqrt{14}$ | C. | 4 | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com