精英家教网 > 高中数学 > 题目详情

【题目】某班制定了数学学习方案:星期一和星期日分别解决个数学问题,且从星期二开始,每天所解决问题的个数与前一天相比,要么“多一个”要么“持平”要么“少一个”,则在一周中每天所解决问题个数的不同方案共有( )

A. B. C. D.

【答案】A

【解析】分析:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,都是0、1、2、3天,共四种情况,利用组合知识可得结论.

详解:因为星期一和星期日分别解决4个数学问题,所以从这周的第二天开始后六天中“多一个”或“少一个”的天数必须相同,

所以后面六天中解决问题个数“多一个”或“少一个”的天数可能是0、1、2、3天,共四种情况,

所以共有=141种.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 . (I)求函数f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的对边分别为a,b,c,已知 ,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

-2

4

-2

4

1)根据表格提供的数据求函数的解析式;

2)求函数的单调递增区间和对称中心;

3)若当时,方程 恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线(b>0)的左、右焦点分别为,其一条渐近线方程为y=x,点P在该双曲线上,且,则=( )

A. 4 B. 4 C. 8 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,PA⊥平面ABCDCDADBCAD.

(Ⅰ)求证:CDPD

(Ⅱ)求证:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图在直三棱柱ABC—A1B1C1中,AC=3BC=4AB=5AA1=4,DAB

中点.

(1) 求证: AC⊥BC1

(2) 求证:AC1平面CDB1

(3) 求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从道题中(道甲组题和道乙组题)不放回地依次任取道作答.

(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;

(2)规定理科考生需作答道甲组题和道乙组题,该考生答对甲组题的概率均为,答对乙组题的概率均为,若每题答对得,否则得零分.现该生已抽到道题(道甲组题和道乙组题),求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣m(x+1)ln(x+1)(m>0)的最大值是0,函数g(x)=x﹣a(x2+2x)(a∈R). (Ⅰ)求实数m的值;
(Ⅱ)若当x≥0时,不等式f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 在(t,10﹣t2)上有最大值,则实数t的取值范围为(
A.
B.
C.[﹣2,1)
D.(﹣2,1)

查看答案和解析>>

同步练习册答案