精英家教网 > 高中数学 > 题目详情

【题目】已知 是R上的增函数,则a的取值范围是

【答案】[2,+∞)
【解析】解:首先,y=logax在区间[1,+∞)上是增函数
且函数y=(a+2)x﹣2a区间(﹣∞,1)上也是增函数
∴a>1…(1)
其次在x=1处函数对应的第一个表达式的值要小于或等于第二个表达式的值,即
(a+2)﹣2a≤loga1a≥2…(2)
联解(1)、(2)得a≥2.
所以答案是:[2,+∞).

【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对对数函数的单调性与特殊点的理解,了解过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知点P在☉O外,PC是☉O的切线,切点为C,直线PO与☉O相交于点A,B.

(1)试探索∠BCP与∠P的数量关系;
(2)若∠A=30°,则PB与PA有什么关系?
(3)∠A可能等于45°吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知D,E,F分别为△ABC的边BC,CA,AB的中点,记 =a=b.则下列命题中正确的个数是( )
= a-b;② =a+ b; = a+ b;④ 0.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断并证明f(x)的奇偶性;
(2)求证:
(3)已知a,b∈(﹣1,1),且 ,求f(a),f(b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ,且此函数图象过点(1,5).
(1)求函数m的值;
(2)判断函数f(x)在[2,+∞)上的单调性?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y= 的定义域、值域和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+3x+a
(1)当a=﹣2时,求不等式f(x)>2的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga (a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.
(1)求f(0)的值和实数m的值;
(2)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

同步练习册答案