精英家教网 > 高中数学 > 题目详情
19.已知f(x)是定义在实数集R上的不恒为零的偶函数,且xf(x+1)=(x+1)f(x)对任意实数x恒成立,则$f[f(\frac{5}{2})]$的值是(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

分析 令g(x)=$\frac{f(x)}{x}$,则g(x)周期为1,计算f($\frac{1}{2}$)和f(0),根据周期得出f($\frac{5}{2}$),从而得出答案.

解答 解:令x=-$\frac{1}{2}$得-$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{2}$f(-$\frac{1}{2}$)=$\frac{1}{2}$f($\frac{1}{2}$),
∴f($\frac{1}{2}$)=0,
令x=0得f(0)=0,
∵xf(x+1)=(x+1)f(x),∴$\frac{f(x+1)}{x+1}=\frac{f(x)}{x}$.
令g(x)=$\frac{f(x)}{x}$,则g(x+1)=g(x),
∴g(x)的周期为1,
∴g($\frac{5}{2}$)=g($\frac{1}{2}$)=$\frac{f(\frac{1}{2})}{\frac{1}{2}}$=0,
即g($\frac{5}{2}$)=$\frac{f(\frac{5}{2})}{\frac{5}{2}}$=0,∴f($\frac{5}{2}$)=0,
∴f(f($\frac{5}{2}$))=f(0)=0.
故选A.

点评 本题考查了抽象函数的周期,构造函数g(x)是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ex(lnx+x-1).
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)试比较f(x)与1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)用辗转相除法求117与182的最大公约数,并用更相减损术检验.
(2)用秦九韶算法求多项式f(x)=1-9x+8x2-4x4+5x5+3x6在x=-1的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知焦距为2$\sqrt{3}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1、上顶点为D,直线DF1与椭圆C的另一个交点为H,且|DF1|=7|F1H|.求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若命题“?x∈[1,5],使x2+ax+2>0”为真命题,则实数a的取值范围为(  )
A.$(-\frac{27}{5},+∞)$B.(-3,+∞)C.$(-2\sqrt{2},+∞)$D.$(-3,-2\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.记数列{an}的前n项和为Sn,若Sn=3an+1,则a10=(  )
A.-$\frac{{3}^{9}}{{2}^{10}}$B.-$\frac{{3}^{10}}{{2}^{10}}$C.$\frac{{3}^{9}}{{2}^{10}}$D.$\frac{{3}^{10}}{{2}^{10}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i为虚数单位,复数$z=\frac{1+2i}{i-1}$,则复数z的虚部是(  )
A.$-\frac{3}{2}i$B.$-\frac{3}{2}$C.$\frac{3}{2}i$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知${({x+a})^2}{({2x-\frac{1}{x}})^5}$的展开式中不含x3的项,则a=±1.

查看答案和解析>>

同步练习册答案