精英家教网 > 高中数学 > 题目详情

【题目】有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100.设该款手机每部使用年共需维修费用元,总费用.(总费用购买费用网络费和电话费维修费用)

1)求函数的表达式:

2)这款手机每部使用多少年时,它的年平均费用最少?

【答案】(1);(2)这款手机使用年时它的年平均费用最少

【解析】

1)第年的维修费用为,根据等差数列求和公式可求得;将加上购买费用和年的网络费和电话费总额即可得到;(2)平均费用,利用基本不等式可求得最小值,根据取等条件可求得的取值.

1

2)设每部手机使用年的平均费用为

,即时,

这款手机使用年时它的年平均费用最少

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.

1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱的底面是菱形,平面,点的中点.

(1)求证:直线平面

(2)求证:平面

(3)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,如图是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?

注:,其中.

(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;

(3)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中有2名选手的等级为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为正整数,集合),对于集合中的任意元素,记.

1)当时,若,求的值;

2)当时,设的子集,且满足:对于中的任意元素,当相同时,是奇数,当不同时,是偶数,求集合中元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,过点的直线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】符号表示不大于的最大整数(,例如:

1)已知,分别求两方程的解集

2)设方程的解集为,集合,若,求的取值范围.

3)在(2)的条件下,集合,是否存在实数,若存在,请求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,记集合;

(1)设,,求.

(2)设,,若,求实数a的取值范围.

(3)设.如果求实数b的取值范围.

查看答案和解析>>

同步练习册答案