【题目】有一款手机,每部购买费用是5000元,每年网络费和电话费共需1000元;每部手机第一年不需维修,第二年维修费用为100元,以后每一年的维修费用均比上一年增加100元.设该款手机每部使用年共需维修费用元,总费用元.(总费用购买费用网络费和电话费维修费用)
(1)求函数、的表达式:
(2)这款手机每部使用多少年时,它的年平均费用最少?
科目:高中数学 来源: 题型:
【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.
(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,如图是根据调查结果绘制的选手等级人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成列联表,并据此资料你是否有的把握认为选手成绩“优秀”与文化程度有关?
注:,其中.
(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;
(3)如果在优秀等级的选手中取4名,在良好等级的选手中取2名,再从这6人中任选3人组成一个比赛团队,求所选团队中有2名选手的等级为优秀的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为正整数,集合(),对于集合中的任意元素和,记.
(1)当时,若,,求和的值;
(2)当时,设是的子集,且满足:对于中的任意元素、,当、相同时,是奇数,当、不同时,是偶数,求集合中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,过点的直线的参数方程为(为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线相交于, 两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】符号表示不大于的最大整数(),例如:
(1)已知,分别求两方程的解集;
(2)设方程的解集为,集合,若,求的取值范围.
(3)在(2)的条件下,集合,是否存在实数,,若存在,请求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com