精英家教网 > 高中数学 > 题目详情
设数列{an}是等差数列,若a3+a4+a5=12,则a1+a2+…+a7=( )
A.14
B.21
C.28
D.35
【答案】分析:由a3+a4+a5=12,可得 a4=4,故有 a1+a2+…+a7=7a4,运算求得结果.
解答:解:∵数列{an}是等差数列,若a3+a4+a5=12,∴3a4=12,a4=4.
∴a1+a2+…+a7=7a4=28.
故选C.
点评:本题主要考查等差数列的定义和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{
anbn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)设数列{an}满足a1=1,a2=2,对任意的n∈N*,an+2是an+1与an的等差中项.
(1)设bn=an+1-an,证明数列{bn}是等比数列,并求出其通项公式;
(2)写出数列{an}的通项公式(不要求计算过程),令cn=
3
2
n(
5
3
-an)
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市望子成龙学校高二(上)期中数学试卷(解析版) 题型:解答题

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省临沂市重点高中高二(上)期末数学试卷(理科)(解析版) 题型:解答题

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市望子成龙学校高二(上)期中数学试卷(解析版) 题型:解答题

设数列{an}是等差数列,数列{bn}是各项都为正数的等比数列,且a1=b1=1,b1+b2=a2,b3是a1与a4的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)求数列{}的前n项和Sn

查看答案和解析>>

同步练习册答案