精英家教网 > 高中数学 > 题目详情

【题目】已知是由具有公共直角边的两块直角三角板()组成的三角形,如左下图所示.其中,.现将沿斜边进行翻折成不在平面上).分别为的中点,则在翻折过程中,下列命题不正确的是( )

A. 在线段上存在一定点,使得的长度是定值

B. 在某个球面上运动

C. 存在某个位置,使得直线所成角为

D. 对于任意位置,二面角始终大于二面角

【答案】C

【解析】分析:由题意,可的二面角和二面角由共同的平面角,

且另一个面都过点,过点作平面的垂线,即可得到二面角和二面角的平面角,进而的大小关系即可.

详解:不妨设,取中点,易知落在线段 上,且,

所以点到点的距离始终为,即点在以点为球心,半径为的球面上运动,

因此A、B选项不正确;

对于C选项,作可以看成以为轴线,以为平面角的圆锥的母线,易知落在同一个轴截面上时, 取得最大值,则的最大值为,此时落在平面上,所以,即所成的角始终小于,所以C选项不正确;

对于D选项,易知二面角为直二面角时,二面角始终大于二面角,当二面角为锐二面角时,如图所示作平面与点,然后作分别交

则二面角的平面角为,二面角的平面角为

又因为,所以

所以二面角始终大于二面角,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是定义域上的增函数,求的取值范围;

2)设分别为的极大值和极小值,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线,如图一平行于轴的光线射向抛物线,经两次反射后沿平行轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:

产量(单位:斤)

播种方式

[840860

[860880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

约定亩产超过900斤(含900斤)为产量高,否则为产量低

1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)

2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为产量高播种方式有关?

产量高

产量低

合计

直播

散播

合计

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为 (t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,QAP的中点.

(1)求点Q的轨迹C2的直角坐标方程;

(2)直线l与直线C2交于AB两点,若|AB|≥2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】线段AB为圆的一条直径,其端点AB在抛物线 上,且AB两点到抛物线C焦点的距离之和为11.

1)求抛物线C的方程及直径AB所在的直线方程;

2)过M点的直线l交抛物线CPQ两点,抛物线CPQ处的切线相交于N点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知曲线的极坐标方程为,点是曲线的交点,点是曲线的交点,均异于原点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为正方形,四边形为矩形,且平面与平面互相垂直.若多面体 的体积为,则该多面体外接球表面积的最小值为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案