精英家教网 > 高中数学 > 题目详情

(12分)如图所示,在三棱柱中,点为棱的中点.

(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线所成的角的余弦值.

(1)证明:连结,交于点,连结,证明
推出
(2)

解析试题分析:(1)证明:连结,交于点,连结
 .........................1分

 ...............................3分

 ..................5分
(2)解:
是异面直线所成的角 ..................6分
棱柱为直棱柱,且棱长均为
 ...............8分
 .....................9分
的中点,连接,则  ................10分
 ...................11分
 .........................12分
考点:本题主要考查立体几何中线面平行、直线与直线所成的角。
点评:典型题,立体几何中线面关系与线线关系的相互转化是高考重点考查内容,角的计算问题,要注意“一作、二证、三计算”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,在四棱锥中,的中点.

求证:(1)∥平面
(2)⊥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,

(Ⅰ)求证:平面平面
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图4,已知四棱锥,底面是正方形,,点的中点,点的中点,连接,.

(1)求证:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在上,过点//的位置(),
使得.

(I)求证:  (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.

查看答案和解析>>

同步练习册答案