(12分)如图所示,在三棱柱中,点为棱的中点.
(1)求证:.
(2)若三棱柱为直三棱柱,且各棱长均为,求异面直线与所成的角的余弦值.
(1)证明:连结,交于点,连结,证明
推出;
(2)。
解析试题分析:(1)证明:连结,交于点,连结
则 .........................1分
...............................3分
又
..................5分
(2)解:
是异面直线和所成的角 ..................6分
棱柱为直棱柱,且棱长均为
...............8分
.....................9分
取的中点,连接,则 ................10分
...................11分
.........................12分
考点:本题主要考查立体几何中线面平行、直线与直线所成的角。
点评:典型题,立体几何中线面关系与线线关系的相互转化是高考重点考查内容,角的计算问题,要注意“一作、二证、三计算”。
科目:高中数学 来源: 题型:解答题
(本小题满分6分)
如图,在边长为的菱形中,,面,,、分别是和的中点.
(1)求证: 面;
(2)求证:平面⊥平面;
(3)求与平面所成的角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为圆的直径,点、在圆上,,矩形所在的平面与圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,平面与平面所成的锐二面角的大小为?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,在点上,过点做//将的位置(),
使得.
(I)求证: (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.
(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com