精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ABCD的边长为a,E、F、G、H分别为AB、BC、CD、DA的中点.若沿EF、FG、GH、HE将四角折起,试问能折成一个四棱锥吗?为什么?你从中能得到什么结论?对于圆锥有什么类似的结论?

【答案】略

解析连接EG、FH,将正方形分成四个一样的小正方形.若将正方形ABCD沿EF、FG、GH、HE折起,则四个顶点必重合于正方形的中心,故不能折成一个四棱锥.由此我们可以推想:1所有棱锥的侧面三角形上以公共顶点为顶点的所有角之和必小于360°;2所有棱锥的侧面展开图不可能由若干个有公共顶点的三角形组成,并且公共顶点在图形的内部.另外,对于圆锥我们有下列猜测:圆锥的侧面展开图一定是一个扇形,绝不可能是圆,但可以是一个半圆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 圆锥的母线长等于底面圆直径

B. 圆柱的母线与轴垂直

C. 圆台的母线与轴平行

D. 球的直径必过球心

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】庆华租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50.

1)当每辆车的月租金定为3600元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为菱形,侧面为等边三角形,且侧面底面 分别为 的中点.

Ⅰ)求证: .

Ⅱ)求证:平面平面.

Ⅲ)侧棱上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品, 生产的总成本万元与年产 之间的函数关系式可以近似地表示为,已知此生产线年产最大为.

(1)求年产为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

(2)若毎吨产品平均出厂价为万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计资料,某工艺品厂的日产量最多不超过20件根据统计资料,每日产品废品率与日产量之间近似地满足关系式日产品废品率=×100% 已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.该车间的日利润日正品赢利额日废品亏损额

1将该车间日利润千元表示为日产量的函数;

2当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={1,3,a},N={2,a2}.若M∪N={1,2,3,4,16},则a的值为( )
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求证:函数的图像关于点对称;

)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知l⊥平面α,直线m平面β.有下面四个命题:
①α∥βl⊥m;②α⊥βl∥m;③l∥mα⊥β;④l⊥mα∥β.
其中正确的命题是( )
A.①②
B.③④
C.②④
D.①③

查看答案和解析>>

同步练习册答案