精英家教网 > 高中数学 > 题目详情

【题目】我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.

1)求函数图象的对称中心;

2)类比上述推广结论,写出函数的图象关于y轴成轴对称图形的充要条件是函数为偶函数的一个推广结论.

【答案】1;(2)见解析

【解析】

1)将函数的解析式经过适当的变形,得出,构造函数,利用奇偶性的定义证明为奇函数,根据题设条件即可得出函数图象的对称中心;

2)将“函数的图象关于点成中心对称图形”,类比为“函数的图象关于直线成轴对称图形”,再将“函数为奇函数”,类比为“函数为偶函数”,即可写出结论.

解:(1.

,则.

为奇函数.

的图象关于点对称.

的图象的对称中心是点.

2)函数的图象关于直线成轴对称图形的充要条件是函数为偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-a|-1,(a为常数).

1)若fx)在x[02]上的最大值为3,求实数a的值;

2)已知gx=xfx+a-m,若存在实数a∈(-12],使得函数gx)有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意的实数m,n都有,且当,.

(1)

(2)求证:R上为增函数;

(3),且关于x的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)g(x)(a>0,且a≠1).

(1)求函数φ(x)f(x)g(x)的定义域;

(2)试确定不等式f(x)≤g(x)x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.

(1)求某节目的投票结果是最终获一等奖的概率;

(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X的分布列及均值和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.

(1)求曲线E的方程;

(2)已知m≠0,设直线xmy﹣1=0交曲线EAC两点,直线mx+ym=0交曲线EBD两点,若CD的斜率为﹣1时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷一枚骰子,记事件为“落地时向上的数是奇数”,事件为“落地时向上的数是偶数”,事件为“落地时向上的数是的倍数”,事件为“落地时向上的数是”,则下列每对事件是互斥事件但不是对立事件的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:

总计

读营养说明

不读营养说明

总计

附:

(1)由以上列联表判断,能否在犯错误的概率不超过的前提下认为性别和是否看营养说明有关系呢?

(2)从被询问的名不读营养说明的大学生中随机选取名学生,求抽到女生人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)设,若对,求的取值范围.

查看答案和解析>>

同步练习册答案