精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{1}{x}$-2.
 (1)求f(x)的定义域;
(2)证明:函数f(x)在(0,+∞)上为减函数.

分析 (1)由分母x≠0,求出函数的定义域即可;(2)首先,任设两个变量,然后,作差比较,最后,得到结论.

解答 解:(1)由分母x≠0,得函数f(x)的定义域是{x|x≠0},
(2)任设x1,x2∈(0,+∞),
且x1<x2
∴f(x1)-f(x2)=$\frac{1}{{x}_{1}}$-2-($\frac{1}{{x}_{2}}$-2)
=$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$=$\frac{{x}_{2}{-x}_{1}}{{{x}_{1}x}_{2}}$,
∵x1<x2
∴x2-x1>0,
∴f(x1)-f(x2)>0,
∴函数f(x)=$\frac{1}{x}$-2在(0,+∞)上是减函数.

点评 本题主要考查函数的定义域问题,单调性的定义,借助于函数单调性定义求解时,一定要注意所取的自变量的任意性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax+3.
(1)若f(x)≥a对x∈R恒成立,求实数a的取值范围;
(2)若f(x)≥a对x∈[-1,1]恒成立,求实数a的取值范围;
(3)若f(x)≥a对x∈[-2,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设曲线f(x)=$\frac{x}{lnx}$在点P(x,f(x))处的切线在y轴上的截距为b,则当x∈(1,+∞)时,b的最小值为(  )
A.eB.$\frac{e}{2}$C.$\frac{{e}^{2}}{2}$D.$\frac{{e}^{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,过直线l外一点P,作直线a,b,c分别交直线l于点A,B,C,求证:直线a、b、c共面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线1:y=kx+2与椭圆C:x2+$\frac{{y}^{2}}{2}$=1交于A、B两点,且kOA+kOB=3,k=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.当P为何值时,不等式$\frac{{x}^{2}+px-2}{{x}^{2}-x+1}$<2对任意实数x恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在极坐标系中,作出下列各点:
(1)A(2,$\frac{π}{6}$),B(6,-120°),C(1,$\frac{π}{3}$),
     D(4,-$\frac{3π}{4}$),E(4,0),F(2.5,180°);
(2)A(3,$\frac{π}{3}$),B(3,$\frac{π}{6}$),C(3,$\frac{π}{2}$),D(3,π),E(3,$\frac{3π}{2}$),并说明这5个点有什么关系;
(3)A(-2,$\frac{π}{6}$),B(-1,$\frac{π}{6}$),C(3,$\frac{π}{6}$),D(4.5,$\frac{π}{6}$),E(4.55,$\frac{π}{6}$),并说明这5个点有什么关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知不等式|ax+1|≤b的解集是[-1,3],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)写出函数y=x2-2x的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?
(2)写出函数y=|x|的单调区间及其图象的对称轴,观察:在函数图象的对称轴两侧的单调性有什么特点?
(3)定义在[-4,8]上的函数y=f(x)的图象关于直线x=2对称,y=f(x)的部分图象如图所示.请补全函数y=f(x)的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点?
(4)由以上你发现了什么结论?(不需要证明)

查看答案和解析>>

同步练习册答案