【题目】已知数列a,b,c是各项均为正数的等差数列,公差为d(d>0).在a,b之间和b,c之间共插入n个实数,使得这n+3个数构成等比数列,其公比为q.
(1)求证:|q|>1;
(2)若a=1,n=1,求d的值;
(3)若插入的n个数中,有s个位于a,b之间,t个位于b,c之间,且s,t都为奇数,试比较s与t的大小,并求插入的n个数的乘积(用a,c,n表示).
【答案】(1)见解析;(2).(3)当n=4k﹣2(k∈N*)时,积为;当n=4k(k∈N*)时,积为.
【解析】
(1)先由条件求出知,又有c=a+2d代入即可得|qn+2|>1,就可证明结论;
(2)先求出b=1+d,c=1+2d,然后对插入的数分所在位置所存在的两种情况分别求出d的值即可;
(3)先由条件求得|q|s+1>|q|t+1s>t.然后再对q所存在的可为正数,也可为负数两种情况分别求出插入的n个数的乘积即可.
(1)由题意知,c=a+2d,
又a>0,d>0,可得,
即|qn+2|>1,故|q|n+2>1,又n+2是正数,故|q|>1.
(2)由a,b,c是首项为1、公差为d的等差数列,故b=1+d,c=1+2d,
若插入的这一个数位于a,b之间,则1+d=q2,1+2d=q3,
消去q可得(1+2d)2=(1+d)3,即d3﹣d2﹣d=0,其正根为.
若插入的这一个数位于b,c之间,则1+d=q,1+2d=q3,
消去q可得1+2d=(1+d)3,即d3+3d2+d=0,此方程无正根.
故所求公差.
(3)由题意得,,又a>0,d>0,
故,可得,又,
故qs+1>qt+1>0,即|q|s+1>|q|t+1.
又|q|>1,故有s+1>t
设n+3个数所构成的等比数列为an,则,
由akan+4﹣k=a1an+3=ac(k=2,3,4,n+2),
可得(a2a3an+2)2=(a2an+2)(a3an+1)(an+1a3)(an+2a2)=(ac)n+1,
又,,
由s,t都为奇数,则q既可为正数,也可为负数,
①若q为正数,则a2a3an+2,插入n个数的乘积为;
②若q为负数,a2,a3,an+2中共有个负数,
故a2a3,所插入的数的乘积为.
所以当n=4k﹣2(k∈N*)时,所插入n个数的积为;
当n=4k(k∈N*)时,所插入n个数的积为.
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,已知asinB=bsin2A.
(1)求角A;
(2)若a=5,△ABC的面积为,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】波罗尼斯(古希腊数学家,约公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有,,则当的面积最大时,AC边上的高为_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,直线l的参数方程为(t为参数),直线l与曲线C交于M,N两点.
(1)若点P的极坐标为(2,π),求|PM||PN|的值;
(2)求曲线C的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,前n项和为,且.
(1)求;
(2)证明数列为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中),使成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线与y轴交于点A,与抛物线交于P,Q,点B与点A关于x轴对称,连接QB,BP并延长分别与x轴交于点M,N.
(1)若,求抛物线C的方程;
(2)若,求外接圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com