【题目】如图,以为顶点的六面体中, 和均为等边三角形,且平面平面, 平面, , .
(1)求证: 平面;
(2)求此六面体的体积.
【答案】(1)证明见解析;(2) 2.
【解析】试题分析:(Ⅰ)作 ,交于,连结 ,根据条件证明四边形是平行四边形;(Ⅱ)将此六面体分成两个三棱锥的体积和 ,根据(Ⅰ)的结果可知点到平面的距离是,点到平面的距离是,这样求体积和.
试题解析:(Ⅰ)作,交于,连结.
因为平面平面,
所以平面,
又因为平面,
从而.
因为是边长为2的等边三角形,
所以,
因此,
于是四边形为平行四边形,
所以,
因此平面.
(Ⅱ) 因为是等边三角形,
所以是中点,
而是等边三角形,
因此,
由平面,知,
从而平面,
又因为,
所以平面,
因此四面体的体积为,
四面体的体积为,
而六面体的体积=四面体的体积+四面体的体积
故所求六面体的体积为2
科目:高中数学 来源: 题型:
【题目】选修4-4;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程.
(Ⅱ)求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于,两点.
(Ⅰ)若,,求的面积;
(Ⅱ)若直线过点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, 为实常数.
(Ⅰ)设,当时,求函数的单调区间;
(Ⅱ)当时,直线、与函数、的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.
求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中 )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最低点为 .
(1)求f(x)的解析式;
(2)当 ,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数的图象,给出下列命题:
①是函数的极值点
②1是函数的极小值点
③在处切线的斜率大于零
④在区间上单调递减
则正确命题的序号是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com