【题目】为了了解某高校大学生是否愿意做志愿者.某调查机构从该高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | a | b | 40 |
女 | 5 | d | A |
总计 | 25 | B | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附:参考公式及数据:
,其中
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | l.323 | 2.706 | 6.635 | 7.879 | 10.828 |
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线与轴轴分别交于两点.
①设直线斜率分别为,证明存在常数使得,并求出的值;
②求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形中,,是,中点,,,,将沿对角线折起至,使平面,则四面体中,下列结论不正确的是( )
A.平面
B.异面直线与所成的角为
C.异面直线与所成的角为
D.直线与平面所成的角为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,有三根针和套在一根针上的个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.
将个金属片从1号针移到3号针最少需要移动的次数记为,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).
(1)问类、类工人各抽查了多少工人,并求出直方图中的;
(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);
(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表
短期培训 | 长期培训 | 合计 | |
能力优秀 | |||
能力不优秀 | |||
合计 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间四边形ABCD中,H,G分别是AD,CD的中点,E,F分别边AB,BC上的点,且;
求证:(1)点E,F,G,H四点共面;
(2)直线EH,BD,FG相交于同一点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中记载的“刍甍”(chu meng)是指底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍,其中是正三角形,,则以下两个结论:①;②,( )
A.①和②都不成立B.①成立,但②不成立
C.①不成立,但②成立D.①和②都成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 4 | 5 | 6 | 8 |
该产品的年利润(百万元) | 30 | 40 | 60 | 50 | 70 |
年返修台数(台) | 19 | 58 | 45 | 71 | 70 |
注:
(1)从该公司2014-2018年的相关数据中任意选取3年的数据,求这3年中至少有2年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润(百万元)关于年生产台数(万台)的回归直线方程是 ①.现该公司计划从2019年开始转型,并决定2019年只生产该产品1万台,且预计2019年可获利32(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的,的值(精确到0.01),相对于①中,的值的误差的绝对值都不超过时,2019年该产品返修率才可低于千分之一.若生产部门希望2019年考核优秀,能否同意2019年只生产该产品1万台?请说明理由.
(参考公式:, ,,相对的误差为.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com