精英家教网 > 高中数学 > 题目详情

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“ 两项作品未获得一等奖”;

丁说:“作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )

A. B. C. D.

【答案】B

【解析】因为对同一类的四项参赛作品,只评一项一等奖.

对于选项A,若作品获得一等奖,则四人说法都错误,不符合题意

对于选项B,若作品获得一等奖,则甲、丁人说法都错误,乙丙说法正确,符合题意

对于选项C,若作品获得一等奖,乙说法错误,其余三人说法正确,不符合题意

对于选项D,若作品获得一等奖,则乙丙丁人说法都错误,不符合题意

综上可得作品获得一等奖.选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次珠宝展览会上,某商家展出一套珠宝首饰,第1件首饰是1颗珠宝,第2件首饰是由6颗珠宝构成的如图1所示的正六边形,第3件首饰是由15颗珠宝构成的如图2所示的正六边形,第4件首饰是由28颗珠宝构成的如图3所示的正六边形,第5件首饰是由45颗珠宝构成的如图4所示的正六边形,以后每件首饰都在前一件的基础上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断:

(1)6件首饰上应有________颗珠宝;

(2)n(nN*)件首饰所用珠宝总颗数为________.(结果用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy24x和直线lx=-1.

(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;

(2)过直线l上任一点P作抛物线的两条切线,切点记为AB,求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,点的中点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是且各阶段通过与否相互独立.

(1)求该选手在复赛阶段被淘汰的概率;

(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1 ,在△ABC中,AB=BC=2, ∠B=90°,D为BC边上一点,以边AC为对角线做平行四边形ADCE,沿AC将△ACE折起,使得平面ACE ⊥平面ABC,如图2.

(1)在图 2中,设M为AC的中点,求证:BM丄AE;

(2)在图2中,当DE最小时,求二面角A -DE-C的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)若曲线存在斜率为-1的切线,求实数a的取值范围;

II)求的单调区间;

III)设函数,求证:当时, 上存在极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(2,0)B(20),曲线C上的动点P满足.

(1)求曲线C的方程;

(2)若过定点M(0,-2)的直线l与曲线C有公共点,求直线l的斜率k的取值范围;

(3)若动点Q(xy)在曲线C上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ4cos θ0.

(1)求直线l与曲线C的普通方程;

(2)已知直线l与曲线C交于AB两点,设M(20),求的值.

查看答案和解析>>

同步练习册答案