精英家教网 > 高中数学 > 题目详情
∈(0,),方程表示焦点在x轴上的椭圆,则的取值范围是(  )
A.(0,B.(,)C.(0,)D.[,)
B
依题意可得,。因为,所以,故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
给定椭圆. 称圆心在原点,半径为的圆是椭圆的“准圆”. 若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心点在原点,准线方程为,离心率为的椭圆方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:为椭圆C的两焦点,P为椭圆C上一点,连接
延长交椭圆于另外一点Q,则⊿的周长_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆:两个焦点之间的距离为2,且其离心率为.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 若为椭圆的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足,求外接圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆的中心在坐标原点,其中一个焦点为圆的圆心,右顶点是圆F与x轴的一个交点.已知椭圆与直线相交于A、B两点.

(Ⅰ)求椭圆的方程;
(Ⅱ)求面积的最大值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
上的两点,
满足,椭圆的离心率短轴长为2,0为坐标原点.
(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若焦点在轴上的椭圆的离心率为,则的值是___________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

查看答案和解析>>

同步练习册答案