精英家教网 > 高中数学 > 题目详情
函数y=x2sinx的导数为(  )
A、y′=x2cosx-2xsinx
B、y′=2xsinx+x2cosx
C、y′=2xsinx-x2cosx
D、y′=xcosx-x2sinx
考点:导数的运算
专题:导数的综合应用
分析:利用乘法的导数运算法则即可得出.
解答: 解:y′=2xsinx+x2cosx.
故选:B.
点评:本题考查了导数的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,令y=f(x),若f(a)>1,则a是取值范围是
 
. 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
πx(x≥0)
ex(x<0)
,若任意x∈[1-2a,2a-1]满足不等式f(a(x+1)-x)≥[f(x)]a恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2<|x-1|+a的解集是区间(-3,3)的子集,则实数a的取值范围是(  )
A、(-∞,5]
B、(-∞,5)
C、(-∞,7]
D、(-∞,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数在y=
4x
x2+1
定义域内(  )
A、有最大值2,无最小值
B、无最大值,有最小值-2
C、有最大值2,最小值-2
D、无最值

查看答案和解析>>

科目:高中数学 来源: 题型:

当a=
2
π
2
0
4-x2
dx时,二项式(x2-
a
x
6展开式中的x3项的系数为(  )
A、-20B、20
C、-160D、160

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,不等式
x+y≥0
x-y≥0
x≤a
(a为常数)表示的平面区域的面积为8,则
x+y+2
x+3
的最小值为(  )
A、8
2
-10
B、5-4
2
C、6-4
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在(x+y)n的展开式中,若第8项系数最大,则n的值可能等于(  )
A、14,15
B、15,16
C、16,17
D、13,14,15

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,若输出S=
2013
2014
,则判断框内应填入(  )
A、i≥2014
B、i≥2015
C、i>2014
D、i>2015

查看答案和解析>>

同步练习册答案