精英家教网 > 高中数学 > 题目详情

以下是某地搜集到的新房屋的销售价格(万元)和房屋的面积)的数据 ,若由资料可知呈线性相关关系。

试求:(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为时的销售价格.
参考公式:

(1)(2)105

解析试题分析:(1)根据数据表先求,再根据公式求,根据线性回归直线必过样本中心点,可得。(2)将代入回归方程即可得所求。
解:(1)由已知数据表求得:,        2分
将数据代入  计算得:b=0.84,  6分
又由得:  8分
线性回归方程为:.          9分
(2)当时,求得(万元),  12分
所以当房屋面积为时的销售价格为105万元。  13分
考点:线性回归方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下
表是一次针对高三文科学生的调查所得的数据,试问:在出错概率不超过0.01的前提下文
科学生总成绩不好与数学成绩不好有关系吗? 

 
总成绩好
总成绩不好
总计
数学成绩好
20
10
30
数学成绩不好
5
15
20
总计
25
25
50
 
(P(K2≥3.841)≈0.05,P(K2≥6.635)≈0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某果农选取一片山地种植沙糖桔,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间[40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的倍.

(1)求a,b的值;
(2)从样本中产量在区间(50,60]上的果树中随机抽取2株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:

 
 
喜爱打篮球
 
不喜爱打篮球
 
合计
 
男生
 
 
 
5
 
 
 
女生
 
10
 
 
 
 
 
合计
 
 
 
 
 
50
 
 
已知在全部人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否认为喜爱打篮球与性别有关?说明你的理由.(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:

编号n
1
2
3
4
5
成绩xn
70
76
72
70
72
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为调查民营企业的经营状况,某统计机构用分层抽样的方法从A、B、C三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)

城市
 
民营企业数量
 
抽取数量
 
A
 

 
4
 
B
 
28
 

 
C
 
84
 
6
 
 
(1)求的值;
(2)若从城市A与B抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中,,其中为样本平均值,线性回归方程也可写为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·泰安模拟)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:

锻炼时间
(分钟)
[0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,120)
人数
40
60
80
100
80
40
现采用分层抽样的方法抽取容量为20的样本.
(1)其中课外体育锻炼时间在分钟内的学生应抽取多少人?
(2)若从(1)中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在分钟内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

关于某设备的使用年限和所支出的维修费用(万元),有如下的统计资料:

x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0
(1)如由资料可知呈线形相关关系.试求:线形回归方程;(
(2)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

同步练习册答案