【题目】已知椭圆 的左、右焦点分别为F1、F2 , 短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明: 为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】
(1)解:a=2,b=c,a2=b2+c2,∴b2=2;
∴椭圆方程为
(2)解:C(﹣2,0),D(2,0),设M(2,y0),P(x1,y1),
直线CM: ,代入椭圆方程x2+2y2=4,
得
∵x1=﹣ ,∴ ,∴ ,∴
∴ (定值)
(3)解:设存在Q(m,0)满足条件,则MQ⊥DP
则由 ,从而得m=0
∴存在Q(0,0)满足条件
【解析】(1)由题意知a=2,b=c,b2=2,由此可知椭圆方程为 .(2)设M(2,y0),P(x1 , y1), ,直线CM: ,代入椭圆方程x2+2y2=4,得 ,然后利用根与系数的关系能够推导出 为定值.(3)设存在Q(m,0)满足条件,则MQ⊥DP. ,再由 ,由此可知存在Q(0,0)满足条件.
科目:高中数学 来源: 题型:
【题目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在区间(﹣1,1)内为减函数,求实数a的取值范围;
(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(﹣1,1)内的极值点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,四边形ABCD为菱形,四边形ADEF为矩形,M、N分别是EF、BC的中点,AB=2AF=2,∠CBA=60°.
(1)求证:AN⊥DM;
(2)求直线MN与平面ADEF所成的角的正切值;
(3)求三棱锥D﹣MAN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(I)求的解析式及单调递减区间;
(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系 中,以原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 ,曲线 的参数方程为 .
(1)求曲线 的直角坐标方程与曲线 的普通方程;
(2)试判断曲线 与 是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
(Ⅰ)如图,以过原点的直线的倾斜角θ为参数,求圆x2+y2-x=0的参数方程;
(Ⅱ)在平面直角坐标系中,已知直线l的参数方程为 (s为参数),曲线C的参数方程为 (t为参数),若l与C相交于A,B两点,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点,
(1)求椭圆的标准方程;
(2)经过的直线和椭圆交于两点,交抛物线于两点, 是抛物线的焦点,是否存在直线,使得,若存在,求出直线的方程,若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com